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Received 3 June 1986 

Abstract. Renormalisation group recursion relations are obtained to two-loop order for 
an n-component Landau-Ginzburg-Wilson model containing both hypercubic anisotropy 
and quenched random impurities. The fixed points are enumerated and their stability 
properties analysed, using the E expansion about four spatial dimensions to second order. 
The existence of a new fixed point corresponding to an anisotropic impure system is 
reported. It is found that both isotropic and anisotropic pure systems are unstable to the 
addition of random impurities for n < nR = 4 - 4 ~  + O( E ~ ) ,  while both pure and random 
isotropic systems are unstable to anisotropy for n > nc= 4-2f  +O(E'). Singularities in 
the E expansions for the exponents of the random fixed points are shown to be associated 
with the onset of focal behaviour (the acquisition of complex eigenvalues). These, together 
with the slow convergence ofthe expansions lead us to doubt the reliability of extrapolations 
to three dimensions. 

1. Introduction 

It has long been known that the critical behaviour of an  n-component spin system 
having either cubic anisotropy or quenched random impurities may differ from that 
of the corresponding pure, isotropic system. The analysis of these effects continues to 
attract both theoretical and  experimental interest. 

Using the description of critical behaviour afforded by phenomenological Hamil- 
tonians of the Landau-Ginzburg-Wilson type, Aharony (1973, 1976) investigated the 
effect of cubic anisotropy in pure systems by renormalisation group and &-expansion 
methods. (As usual, we define E =4-d ,  where d is the spatial dimensionality of the 
system.) Calculations to second order of the expansion show that the isotropic 
behaviour, controlled by the Heisenberg fixed point of the renormalisation group, is 
unstable to cubic perturbations when n exceeds a critical value n, = 4 - 2~ + O( E ' ) .  

When the anisotropy is weak, critical behaviour is controlled by a new stable fixed 
point. Under certain conditions, however, it appears that strong anisotropy can give 
rise to a first-order transition (Wallace 1973, Rudnick 1978). It is obviously important 
to know the value of n, in three dimensions. Using a Pad6 approximant to third-order 
results of Ketley and Wallace (1973), Aharony (1976) estimates n, = 3.128 at E = 1. 
On the other hand, Yalabik and  Houghton (1977) obtain n, = 2.3, using the approximate 
recursion relations due  to Kadanoff er a/  (1976). The question of whether nc( d = 3) 
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lies above or below 3 is still unresolved. Recently, it has become apparent that cubic 
anisotropy may be of special importance in interpreting experimental results on systems 
undergoing structural phase transitions (Muller 1984, Muller et all984, Fossheim 1984). 

The effect of quenched, random impurities on the critical behaviour of isotropic 
spin systems has been studied by a number of authors. For n > 1 ,  Lubensky (1975) 
and Grinstein and Luther (1976) have identified a new renormalisation group fixed 
point appropriate to impure systems, having its own characteristic set of critical 
exponents. The pure Heisenberg fixed point is unstable to the introduction of random 
impurities when n lies below a critical value n R  = 4 - 4 s  + O( E’). This coincides with 
the value of n at which the specific heat exponent Q vanishes in the pure, isotropic 
system, in agreement with the well known argument of Harris (1974) that critical 
behaviour should be unaffected by random impurities when Q is negative. For systems 
with Ising symmetry (n  = l), the pure behaviour is also unstable, but the renormalisation 
group equations exhibit a special degeneracy. As first shown by Khmel’nitskii (1975, 
see also Shalaev 1977) critical exponents, characteristic of a further fixed point, can 
be obtained as power series in E”*. It has also proved possible to study models of 
systems in which random impurities have long-range correlations (Weinrib and Halperin 
1983) or are extended objects (Dorogovtsev 1980, Boyanovsky and Cardy 1982, Lawrie 
and Prudnikov 1984). In this paper, however, we consider only uncorrelated point 
impurities. 

In real magnetic systems with cubic anisotropy, one may in general expect random 
impurities always to be present in some degree, and the asymptotic critical behaviour 
will be determined by the outcome of the competition between the two effects. Equally, 
of course, one must in principle include the possibility of numerous other effects, such 
as dipolar interactions, lattice compressibility, etc, but we shall not aim here for full 
generality. Nor, indeed, are we able to address the question of whether departures 
from pure isotropic behaviour due to any of these effects will, in specific materials, be 
experimentally resolvable. Our purpose is to examine the renormalisation group 
structure of the n-component model containing both cubic anisotropy and random 
impurities, to enumerate the fixed points and to establish their stability properties as 
functions of n and d. The case n = 2 has in fact been investigated recently by Yamazaki 
et a1 (1985), who discovered a degeneracy analogous to that which, as mentioned 
above, occurs in isotropic systems for n = 1. They showed that in this case too an 
expansion is appropriate, and we confirm their results up to a minor numerical 
difference. More generally, using recursion relations which for all n are valid to order 
E’, we identify a new fixed point corresponding to a system with both random point 
impurities and cubic anisotropy, and we record the values of its exponents to order 
E’. It seems, however, that this fixed point is never completely stable. If n is sufficiently 
close to 4, and if E is sufficiently small, we find the following: the pure, isotropic fixed 
point is stable (and all others unstable in at least one direction) for n R <  n < nc; for 
n > n,, the pure cubic fixed point is stable, while for n < n R  the random isotropic fixed 
point is stable. Unfortunately, the appearance of singularities (which we identify and 
discuss) in the E expansion of critical exponents and the poor convergence of these 
expansions away from the singularities renders extremely hazardous any attempt to 
extend these assertions beyond the immediate neighbourhood of the point n = d = 4. 
In particular, little can be said with confidence about the point n = d = 3 .  

The model we study and its renormalisation group recursion relations are presented 
in § 2. In § 3 ,  we examine the various fixed points of these relations and in § 4 we 
summarise and discuss our main findings. 
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2. Landau-Ginzburg-Wilson Hamiltonian and recursion relations 

The Landau-Ginzburg-Wilson Hamiltonian for a system with cubic anisotropy and 
random point impurities may be written as 

where 4 ( x )  = ( 4 ] ( x ) ,  . . . ,4, ,(r))  is the n-component order-parameter field, and 4’ 
and cb4 denote X:=, 4,4,, and (d2)’ respectively. The isotropic and anisotropic 
coupling constants are respectively U and U, and the function i ( x )  is given by 

i ( x ) = r + p ( x )  (2.2) 

where r is assumed to be proportional to T - T, (with T, the critical temperature) and 
p ( x )  represents the impurity distribution. Evidently, p ( x )  can be regarded as describing 
local, impurity-induced variations in T,. We assume it to have a Gaussian distribution 
of variance A: 

(p(x)p(x’ ) )=A t f ( X - X ’ ) .  (2.3) 

Of course, non-Gaussian corrections to this distribution will normally be present, as 
will impurity-induced contributions to U and 0, but these are all irrelevant, in the 
renormalisation group sense, and d o  not affect asymptotic critical behaviour (see, e.g., 
Lubensky 1975). Clearly, for n = 1, the isotropic and anisotropic interactions in (2.1) 
are identical, and the parameter v is redundant. 

To obtain correlation functions and hence renormalisation group recursion rela- 
tions, it is necessary to average over the quenched impurity distribution (2.3). This 
may be done either by using the replica trick (see, e.g., Grinstein and Luther 1976) or 
by direct averaging (Lubensky 1975). We have actually used the latter method, but 
the results should be identical. In  treating recursion relations to second order in E ,  

we have used the large b limit (where 6 is the change in length scale in a single step 
of renormalisation) as described by Bruce et a1 (1974). An advantage of this method 
is that one can neglect all mass insertions in the perturbation series, which do  not 
contribute to the final expressions for fixed points and critical exponents. 

The recursion relations are 
= 6 2 - 7  { r +  [4(n + 2 ) u  - A +  12u]A( r )  

-[32(n + 2 ) u 2 - 8 ( n  +2)uA+A’+96u2+ 192uu -24Ac]E(r )}  (2 .4a)  

= 6 6 - 2 7  { U  - [4( n +8)u ’  -6uA+24uu]K4( ln  6)( 1 + e / 2  In 6 )  

+ [ 16( n’+6n +20)u3  - 12( n + 8)u2A+9uA‘ 

+ 1 4 4 ( n + 4 ) u ’ v + 4 3 2 u v ’ - 7 2 u A v ] ( K 4  In 6)’ 

+ [32(5n + 2 2 ) ~ ’  - 48( n + 5)u’A + 21 uA’ 

+ 1 1 52u2v + 288uu’ - 216uAuI K : (  In b ) (  1 + In 6)} 

{ A  - [ 8( n + 2) U A - 4 A’ + 24A U ]  Kd (In b ) (  1 + ~ / 2  In b ) = b‘-’7 

+ [5A3 - 24( n + 2 ) u A ’ + 4 8 (  n +2)’u’A - 7 2 3 ’ ~  + 4 3 2 A ~ ’  

+ 2 8 8 ( n + 2 ) u  Au](K, In b)’+[11A3-48(n+2)uA’ 

(2.46) 

+96(n+2)u2A-144A’t i+288Au’+576uAu]K~( ln  b ) ( l + l n  b)} ( 2 . 4 ~ )  
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b*-’11{ U -[36u’+48uu -6Au]K,,(In b ) ( l +  ~ / 2  In b)  
+9[64u’u+96uv2+48u7- 12Au’+A2c- 16uAu]( K,ln b)’ 

+7A’c--8(n+14)uAv]K;(ln b ) ( l + l n  b)} (2.4d ) 

77 = K :[8( n + 2)u’ - 2( n + 2 )  uA + 48ut; + 1/4A’ + 24v’ - 6 6 4 .  

+3[32( t~ + 1 4 ) ~ ’ ~  +768uu’+288u7 -96Av’ 

where Kd =2.rrd”/(2x)’r(d/2) and the Fisher exponent is given by 

The quantities A ( r )  and B ( r )  are the usual one- and two-loop integrals 
( 2 . 5 )  

(k‘+ r ) - ’  
ddk 

(2.6) 

+e7- L - 
ICJ 

Figure 1. Diagrams proportional to u A u  which contribute to the renormalisation of ( a )  U,  

( b )  U and ( c )  A. The isotropic interaction is represented by a wavy line, the anisotropic 
interaction by a dot and the effective vertex arising from the impurity average by a dotted 
line. 
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with the ranges of integration given by b - ’  s /kl s 1. These recursion relations are, of 
course, extensions of those given by Aharony (1973) for pure cubic systems and by 
Lubensky (1975) for impure, isotropic systems. The terms which have not been 
calculated previously are those proportional to U AV, represented diagrammatically in 
figure 1. There are also terms proportional to Av,  AV’ and A2u which have not previously 
arisen: these however are simply obtained by setting n = 1 in the coefficients of 
corresponding terms proportional to u A ,  u2A and uA2. 

3. Fixed points and their stability properties 

3.1. Fixed points 

As always, the recursion relations (2.4) possess a trivial Gaussian fixed point, U* = U* = 
A * = O .  There are also fixed points with A*<O,  corresponding to the unphysical 
situation of an impurity distribution with negative variance. Since no renormalisation 
group flows cross the surface A = 0 ,  these unphysical points may safely be ignored. 
There are eight remaining non-trivial fixed points, which we denote as follows: 

PH: pure isotropic Heisenberg fixed point (U* # 0; U* = A* = 0) 
PC: pure cubic fixed point (U* # 0; U* # 0; A* = 0) 
R H :  random Heisenberg fixed point (U* # 0; U = 0; A* # 0) 
RC: random cubic fixed point (U* # 0; v* # 0; A* # 0) 
PI:  pure Ising fixed point (U* = 0; U* # 0; A* = 0) 
RI: random Ising fixed point (U* = 0; U* # 0; A *  # 0) 
RH( n = 1): degenerate random Ising fixed point ((U + U)* # 0; A* # 0) 
RC( n = 2): degenerate random cubic fixed point (U* # 0; U* # 0; A* # 0). 

Of these, the first four may be said to represent generic types of behaviour, while the 
last four arise from special circumstances. The PI and RI fixed points lie in the surface 
U = 0 where, for any n, the model (2.1) consists of n decoupled Ising-like systems. At 
n = 1, the expansion of U* and A *  for the RH fixed point in integer powers of E is 
singular, but one can instead obtain an expansion in powers of denoted by 
R H ( n  = 1). Naturally, this fixed point has the properties associated with a random 
Ising system. Moreover since, as noted above, U and U are not independent parameters 
for n = 1, it essentially coincides with the R I  fixed point. At n = 2, the RC fixed point 
is similarly ill defined as a power series in E, but again the fixed point RC( n = 2) may 
be obtained as a series in Conceivably, a suitable resummation might reveal that 
Rc(n = 2) is in fact the limit as n + 2 of RC, and similarly for R H (  n = l ) ,  but we are 
unable to show this in detail. 

The random cubic fixed point is a new result of the present study. Its coordinates 
(within the renormalisation scheme used here) are 

E ( - 864( n - 2)2 ) 24( n - 2)Kd 
89n2 + 728n - 1600 

U R C  = 

703n3-3396n2+7392n -6400 
864( n - 2)2(4 - n )  (L - (4 -  n ) ~  

12(n-2)Kd 
ARC = 

487n3 - 3252n2 + 9120n - 8704 
864( n - 2)2( n - 4) 

( n  - 4 ) ~  
72(n -2)Kd 

URC = 

(3.1 1 

(3.2) 

(3.3) 
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and its static critical exponents may be found using standard scaling relations from 
the Fisher exponent 7 and the correlation length exponent v which are 

E 2  
( 7 5 r 1 ~ - 1 6 8 n - 9 6 ) + 0 ( ~ ~ )  ' = 5184( n - 2 ) 2  

( 3 . 4 )  

( 5 n - 8 )  1289n3-9612n2+20064n-12416 
48(  n - 2 )  

v = f +  E +  E 2 + 0 ( E 3 ) .  ( 3 . 5 )  
41 472( n - 2 ) 3  

3.2. Stability of genericjxed points near n = d = 4 

Critical exponents of the PH, PC and RH fixed points are recorded by many authors 
(see, e.g., Wilson and  Kogut 1974, Ma 1976, Brezin et a1 1976, Aharony 1976, Yamazaki 
1978)  using the first few orders of the E expansion. In order to determine which set 
of exponents controls asymptotic critical behaviour for given values of n and d, we 
must ascertain which of the fixed points is stable under the renormalisation group and  
will therefore attract flows from a large region of the parameter space. We consider 
first the four generic fixed points PH, PC, RH and RC. In the neighbourhood of a fixed 
point u t ,  (with (U,, u 2 ,  u3) (U, A, U)), the recursion relations may be linearised in the 
form 

( 3 . 6 )  

and the matrix A has eigenvalues of the form by!, where yi are universal exponents, 
which we obtain to order E ~ .  Evidently, since b > 1, a negative exponent indicates an 
eigenperturbation against which the fixed point is stable, while a positive exponent 
indicates instability. Usually the exponents are obtained in the form 

y ( n ,  E ) = U ( ~ ) E + ~ ( ~ ) E ' + ~ ( E ~ )  ( 3 . 7 )  

where the functions a ( n )  and b ( n )  are exactly known. We need to discover where, if 
at all, such an exponent changes sign. Clearly, an  estimate of a zero, Z ( E ) ,  of y such 
that b( A )  = - a (  A ) / &  and a (  A )  # 0 will be highly unreliable, unless it can be supported 
by information about late terms of the expansion, and  no such information is available 
to us. For this reason, we are suspicious of numerical estimates given by Yamazaki 
( 1 9 7 8 )  concerning relative stabilities of the pure and random isotropic fixed points, 
which we have cause to reconsider below. When E is sufficiently small, the sign of 
y ( n ,  E )  is the same as that of a ( n )  and the expansion ( 3 . 7 )  provides reliable evidence 
of a change of sign only if there is an no such that a (  no)  = 0 and  a'( no) # 0. Unless 
b ( n )  is singular at no,  we may then obtain an  estimate of the zero, A ( & )  in the form 

A (  E )  = no- [ b( n o ) / a ' (  n o ) ] &  + 0 ( e 2 ) .  (3.8) 

Only by means of such a systematic expansion can one guarantee that the stability 
properties obtained will be consistent with general features of the recursion relations. 
Namely, because of the polynomial character of the functions controlling the flow, 
changes in stability as n and E vary can come about only when two fixed points pass 
through each other. Approximations, other than a systematic expansion in E will in 
general yield inconsistent estimates of ff when applied to the coordinates and eigen- 
values of the two fixed points which are supposed to coincide. 
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Flows connecting the four fixed points are shown schematically in figure 2. The 
direction of flow along each side of the square is determined by the appropriate 
exponents of the two fixed points at its ends, one of which must be positive and the 
other negative unless the fixed points coincide. Horizontal flows in figure 2 reflect the 
importance of cubic anisotropy and the exponents will be denoted by y,' for the ith 
fixed point. Likewise, vertical flows reflect the importance of random impurities, and 
the exponents will be labelled yA'. However, this notation does not necessarily imply 
that, for example, the eigenvector corresponding to y,' is exactly parallel to the U axis. 
Each fixed point also possesses an eigenvalue y,' which is always negative (insofar as 
no zero of the form (3.8) exists), so that the whole of figure 2 is stable against 
perturbations in U. The stabilities are most reliably obtained in the neighbourhood of 
n = d = 4. Consider first the flows in the U direction. To order E' ,  the exponents are 

( n  - 4 )  E +5n'+  14n + 152 
yg" = - e 2  

( n + 8 )  ( n + 8 ) 3  

y;H = ~ 

E 2  

yF=-  &' 

( n  - 4 )  n(71n2-388n - 160) 
4 ( n - 1 ) & -  512(n - 1)3 

(4- n )  e + ( n  - 1 ) (  19n3 -72n2-660n + 848') 
3n 81 n 3 (  n + 2)  

(3.9) 

(3.10) 

(3.11) 

(4-n) E+(4333n4-44068n3+144960n2-196864n+96256) 
6(n - 2 )  5184(5n -8 ) (n  -q3 y y = ~ E 2  (3.12) 

of which (3.10) and (3.12) are given here for the first time. All of these vanish at 
n = nc = 4 - 2e + O( E ' ) ,  and at this value the fixed points PH and PC coincide as do R H  

and RC. For n < n,, therefore, the isotropic fixed points PH and R H  are stable against 
cubic perturbations, whereas they are unstable for n > n,. This leads to the satisfactory 
(though apparently not inevitable) conclusion that cubic anisotropy is relevant for 
both pure and impure systems in the same range of values of n and d. 

Figure 2. Schematic flow diagram exhibiting the pure Heisenberg ( P H ) ,  pure cubic (PC),  

random Heisenberg (RH) and random cubic (RC)  fixed points and the special trajectories 
connecting them. Horizontal flows are to the right (left) if anisotropy is relevant (irrelevant), 
according to the signs of the eigenvalues y:. Vertical flows are downwards (upwards) if 
random impurities are relevant (irrelevant) as determined by the signs ofy;. The disposition 
of fixed points in the figure does not necessarily reflect the signs of U* and A*. 
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Turning to flows in the A direction, we have 

p H -  (4-  n) (n +2)(13n +44)&2 
(n+8)3 Y A  -- ( n  + 8) E - 

(3.13) 

y y  = - (n  -4) &+n(-35n3+1932n2-3840n+512)  E 2  (3.14) 
4(n - 1) 512(5n -8)(n - 1)3 

(4  - n )  E + 19n3 - 345n2 + 750n -424 
yF=- E 2  

3n 81n3 
(3.15) 

E *  (3.16) 
y y  = - ( n - 4 )  &+(-767n4+27332n3-141 024n2+256256n-155648) 

6(n-2)  5184(7n - 16)(n -2)3 

of which the last two are new results of the present study. All of these exponents 
vanish at n = nR = 4 - 4.5 + O( E ~ ) ,  and here also the fixed points PH and RH coincide 
as do PC and RC. For n > nR the pure fixed points are stable, while for n < nR they are 
unstable. Also, for n > nR,  the random fixed points are at negative, unphysical values 
of A. Thus we arrive at a similar conclusion to that above, namely that for the same 
ranges of values of n and d, random impurities are either relevant or irrelevant to both 
isotropic and cubically anisotropic systems. This agrees with the criterion of Harris 
(1974), since the specific heat exponent Q changes sign at nR for both isotropic and 
cubic systems. 

The flow diagrams which result from these considerations are shown in figure 3. 
From this we see that, in the ranges n c n , ,  n R < n < n , ,  n >  nc respectively, the 
random isotropic, pure isotropic and pure cubic fixed points are absolutely stable. At 
given values of n and d, a system with coupling parameters exactly on one of the 
special trajectories in figure 3 will be mapped by renormalisation into the more stable 
of the two fixed points joined by the trajectory, which will accordingly control its 
critical behaviour. These are, however, very special conditions, and almost all trajec- 
tories eventually flow into the absolutely stable point, which therefore controls the 
asymptotic behaviour of almost all systems to which our model is applicable. (We are 
excluding, for the present, those regions of the parameter space which lie outside the 
domain of attraction of the entire system of fixed points.) This does not, of course, 
necessarily imply that the true asymptotic behaviour will become apparent in an 
experimentally accessible range of temperatures, nor that behaviour characteristic of 
an unstable fixed point may not be approximately realised in some intermediate range 
of temperatures. 

3.3. Singularities and complex eigenvalues 

For practical purposes, one would like to know the values of nc and nR at d = 3 or 
E = 1.  The estimates n, = 4 - 2.5 = 2 and nR = 4 - 4.9 = 0 appear suspect both because 
of the large first-order corrections and in view of the singularities at n = 1 and n = 2 
associated with the random fixed points. There are, moreover, further singularities in 
the exponents (3.12), (3.14) and (3.18) at n = 3 and n =?, whose origin we now explain. 
The random isotropic fixed point RH may be considered in the absence of cubic 
perturbations. Its two eigenvalues corresponding to directions in the U - A  plane are 
eigenvalues of a 2 x 2 matrix, and are therefore the roots of a quadratic secular equation, 
which may be written as 

(3.17) Jp = f( c f D”*) 
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t 
Figure 3. Schematic flow diagrams for ( a )  n > n c ,  ( b )  nR< n < nc and ( c )  n < f lR. In 
each case, a bold box denotes the most stable fixed point. 

where 

(285n3-640n2+ 1088n -256) 
C = - -  E +  &*+o(&~)  (3.18) 

3n 
4(n-1)  512( n - 1) 

(1495n4-9344n3+18240n2-ll  008n+2048) 
& 3 + 0 ( & ~ )  (3.19) 

1024(n - 1)4 

When, for n # 3, (3.17) is expanded in powers of E, the series for y,"" reproduces the 
expression y;" given in (3.14), while yRH gives the exponent 

(365n3- 1488n2+2112n -512) 
128(5n - 8 ) ( n  - 1)2  

YFH=-E+ E2+0(E3)  (3.20) 

Apart from a minor numerical discrepancy in (3.20), these agree with the expressions 
given by Yamazaki (1978). Obviously, however, the expansion is legal only when the 
discriminant is positive. Proceeding as before, we find that D vanishes on the curve 

(3.21) n = n:" = $ [ 1 * 3 ( ~ / 5 ) " * + 0 ( ~ ) ]  
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and that the exponents y ! H  are complex for n!" < n < n,"". For this range of n, the 
fixed point is therefore focal. Let us parametrise the interior of this region by 

n = $ + $ & ~ E ' ~ ~ + O ( E )  (3.22) 

with IA 1 < f i  = 2.236. . . . Then the real part of the exponents y!" is 

Re(Y!H)=fC = - ~ [ 1  - h e " ' + O ( ~ ) ] .  (3.23) 

For sufficiently small e this is negative, so that the fixed point is stable. When E is 
greater than i ,  this expression may become positive, if taken at face value. Although 
there are no  grounds for confidence that Re( Y!") really changes sign in the neighbour- 
hood of A = E-"?, let us for the sake of argument restrict attention to smaller values 
of A, for which n < = 2.56. The situation is depicted in figure 4. On the one hand, 
extrapolation from the region of n = 4, E = 0 indicates that RH is unstable for n > nR = 
4 - 4 8  +O(E ' ) ,  that is above the line ( a ) .  On the other hand, we have just argued that 
for nFH < n < n,RH, that is, inside curve ( b ) ,  the exponents are complex with, at least 
below the line ( c )  where n = 2.56, negative real parts, which means that the fixed point 
should be stable. We see from figure 4 that when E is greater than about 0.35, there 
is a region bounded above by ( c )  and below by ( a )  in which these conclusions are 
contradictory. Moreover, ( a )  was obtained by assuming that the expansion (3.14) was 
legal, which is not true inside (6) .  The disappointing conclusion from this is that the 
E expansion at the order we have considered yields unambiguous results on the stability 
of the random isotropic fixed point only for E < 0.2, say, where ( a )  lies safely above 
( 6 )  while Re(y2h) is unambiguously negative inside ( b ) .  

Similar remarks apply to the random cubic fixed point RC. The exponents (3.12) 
and (3.16) have singularities at n = and n = y. Since the extrapolation from n = 4 

4 

n 3  

2 

0 
E 

Figure 4. Stability properties of the random Heisenberg fixed point. Near n = 4, e = 0, the 
fixed point is stable below the line ( a ) ,  namely for n <  n R = 4 - 4 E .  Within the parabola 
( b ) ,  the eigenvalues are complex. The significance of line ( c )  is explained in the text. 
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fails in any case at n = 2, we consider only the latter. The three eigenvalues of RC are 
the roots of a cubic secular equation, 

y3+r (n ,  E)y2+s(n,  E )y+ t (n ,  E ) = O  (3.24) 

whose coefficients are 

(-3642n3+21 732n2-43 104n+28 416) 
5184(n-2)’ 

r = E +  E 2 + ~ ( E 3 )  (3.25) 

(-1783n4+8368n3-1968n2-29696n+29696) 
15 552( n - 2)4 s = - p  E + & 3 +  (3.26) 

( 1457n3 - 15 036n2+39 264n -30 464) 
5184( n - q3 t = -p2&3 + p E 4 + ~ ( E 5 )  (3.27) 

with 

(3.28) 

The lowest-order approximation to (3.24) factorises as (y2-  &’p2)(y + E )  = 0, and the 
first corrections to the roots thus obtained may be straightforwardly found, giving y:‘, 
y t c  as in (3.12) and (3.16) respectively, together with 

(33 658n’-340308n4+137 811n3-2783 488n2+2795 520n-1114 1 1 2 ) ~ ~  
1728(5n -8)(7n - 16)(n -2)3 

y:C=-E+ 

(3.29) 

Obviously, these expansions are illegal when (3.24) has a pair of complex roots, and 
the poles in the O ( E ~ )  terms are, as before, a warning of this. The condition for a pair 
of roots to be complex is $ > p 3  where p = r2-3s and q =i(2r3-9rs+27t) ,  and we 
find that this occurs for n!‘< n < nTC where 

(3.30) RC - 16 n, - ~ [ 1 * & ( 6 ~ ) ~ ’ ~ + 0 ( ~ ) ] .  

On defining A by 

,E+&! 7 49hE1”+O(E) (3.31) 

we obtain for the real part of the exponents corresponding to y f c  and y:‘ 

Re ( y z c ) =  - & [ ~ - A E ” ’ + ~ ( E ) ] .  (3.32) 

The analogue for the random cubic fixed point of figure 4 is given as figure 5, where 
the line ( c )  corresponding to A&’”=  1 is at n = % = 2.776. 

3.4. Special fixed points and E ”* expansions 

We noted above that in the pure system, the model with U = 0 corresponds to a set of 
n decoupled Ising-like systems. It is clear that, although the impurities couple equally 
to all n components, the quenched average of a correlation function for one component 
remains decoupled from the remainder. It is therefore true to all orders that the plane 
U = 0 is identical to that corresponding to the random Ising system studied by Khmel’nit- 
skii (1975) and Shalaev (1977). It contains a pure Ising fixed point PI at A = 0 and a 
random Ising fixed point R I  at A > 0 (together with the unphysical mirror image of the 
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b I I I I 

n 3 -  - 

- 

0 0.2 0 . 4  0.6 0.8 1.0 

b I I I I 

n 3 -  - 

- 

0 0.2 0 . 4  0.6 0.8 1.0 
E 

Figure 5. Stability properties of the random cubic fixed point. Curves have the same 
meaning as in figure 4. 

latter at A < O ) .  Owing to a degeneracy of the renormalisation group equations, the 
random fixed point and its exponents must be obtained as an expansion in &'I2, and 
only the leading terms of the expansion can be obtained from a two-loop calculation. 
Within the plane U =0, the random fixed point is stable. Its exponents are 

y p  = O(E) (3.33) 
1/2 

Y : I = - 2 [ g ]  +O(E) (3.34) 

but according to Shalaev (1977), a three-loop calculation yields a negative value for 
y,. Both fixed points are, at least for sufficiently small E ,  unstable to the isotropic 
interaction governed by U. Aharony (1973) gives 

and we find 
Y: l= iE - ~ ~ ~ + 0 ( ~ 3 )  (3.35) 

1/2  

yx '=2[g ]  +O(E). (3.36) 

When n = 1, as observed earlier, there is really only a single interaction of strength 
(U + U )  and the entire parameter space is equivalent to the v - A  plane. 

Finally, at n = 2, a similar degeneracy, first noted by Yamazaki er a1 (1985) affects 
the random cubic fixed point. We obtain for the coordinates of the fixed point RC( n = 2) 

(3.37) 
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and there is also an unphysical fixed point at ( - U * ,  -A*,  -U*). The eigenvalues of 
the physical fixed point are 

(3.38) y ,  = --2& + 0(E3 /2 )  
1/2 

Y" = 12[&] +O(E)  

1/2  

y,=-12[&] +O(E). 

(3.39) 

(3.40) 

Apart from a small numerical discrepancy, these agree with the results of Yamazaki 
et al (1985) (their values involve the number 317 rather than 318!). The signs of these 
exponents are in accord with the schematic flow diagram of figure 3(c) which again 
suggests that this fixed point may in fact be the limit as n + 2 of RC. 

4. Conclusions 

We have obtained recursion relations valid to second order of the E expansion for the 
n-component Landau-Ginzburg- Wilson model containing cubic anisotropy and 
quenched random impurities. Except in some special cases discussed in § 3.4, the 
asymptotic critical behaviour is determined by the outcome of a competition between 
four fixed points, the pure isotropic and cubic fixed points PH and PC and their random 
counterparts RH and RC. The random cubic fixed point and its critical exponents 
(3.1)-(3.5) are novel results of the present work. Systematic use of the E expansion 
shows that in both isotropic and anisotropic systems, random impurities are relevant 
for n < nR = 4 - 4 ~  + O( E*), while in both pure and impure systems, cubic anisotropy 
is relevant for n > n, = 4 - 2s + O( E * ) .  In the three intervals n < nR( d ) ,  nR( d )  < n < 
n c ( d )  and n > n c ( d ) ,  the most stable fixed points are respectively RH, PH and PC. 

The application of these results to three-dimensional physics is difficult because of 
the poor convergence of the series. Indeed, we identified in § 3.3 singularities in the 
E expansions for the eigenvalues of the random fixed points (these are associated with 
the onset of focal behaviour) which make the extrapolation especially hazardous. It 
is of course possible to obtain estimates of nR(3) and nc(3) simply by setting E = 1 in  
the expressions for appropriate eigenvalues, and determining the values of n at which 
the resulting functions vanish. The results are mutually inconsistent and not particularly 
reliable, but for completeness we record the values obtained in this way from those 
eigenvalues which do not have obvious singularities. From the vanishing of y:" and 
y:", we obtain respectively the estimates 1.522 and 2.185 for nR(3). The vanishing of 
y;" and y F  yield respectively the estimates 2.0 and 2.282 for n,(3). The latter estimate 
for n c ( 3 )  is very close to that obtained by other methods by Yalabik and Houghton 
(1977), but this is almost certainly fortuitous. 

It is of course well known that a large part of the ut, plane for pure systems lies 
outside the domains of attraction of all identifiable fixed points. It is believed that the 
runaway of renormalisation group trajectories in this region corresponds to a fluctu- 
ation-induced first-order transition, and a detailed construction of the free energy 
which confirms this has been given for the special case n = 2 by Rudnick (1978). The 
essential property of the flow diagram which facilitates this analysis is that every 
trajectory which runs away eventually enters a region of the uv plane which corresponds 
to an unstable Hamiltonian. We have checked numerically, for a representative set of 
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parameter values, that this property is preserved when random impurities are intro- 
duced, so there would seem to be no impediment in principle to extending the argument 
of Rudnick to the more general models considered here. On the other hand, we have 
not succeeded either analytically or numerically in locating the two-dimensional surface 
of tricritical points which divides first- from second-order transitions. This problem 
has been investigated by Yamazaki et a1 (1985) for the case n = 2 ,  but their results are 
valid only for very small values of A. 
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Note added in proof: Since submitting this work for publication, we have learned of recent papers by 
Yamazaki et al(1986a, b) in which a random cubic fixed point is also identified. These papers also consider 
the effects of extended impurities and purely relaxational dynamics. Their numerical results for static critical 
exponents do not agree with those given here. 
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